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Abstract

In this work, the relationship between splines and the control theory has been an-

alyzed. We show that spline functions can be constructed naturaly from the control

theory. By establishing a framework based on control theory, we provide a simple

and systematic way to construct splines. We have constructed the traditional spUne

functions including the polynomial spUnes and the classical exponential spllne. We
have also discovered some new spUne functions such as trigonometric spUnes and the

combination of polynomial, exponential and trigonometric spUnes. The method pro-

posed in this paper is easy to implement. Some numerical experiments are performed

to investigate properties of different spline appro_mations.

1. Introduction.

Spline functions are well known and are widely used for practical approximation of func-

tions or more commonly for fitting smooth curves through preassigned points. Spline tech-

niques have the advantage over most approximation and interpolation techniques in that

the_ are computational feasible. Most of the published spline algorithms are for polynomial

splines and the vast preponderance are for cubic splines. There is a small but excellent lit-

erature on the so called exponential splines and there is an even smaller literature on splines

with more or less arbitrary nodal functions, [9, 3].

In this paper we will present a common frame work for splines that includes polynomial

splines of all orders and generalized exponential splines of all orders. This common frame

work is based on ideas from linear control theory. Let's recall some basic ideas from control

theory. A linear control system is a differential equation

-_x(t)d_.._. A£,(t) + Bff(t) ..



where £ E IR'_, ff E IR"_ and the matrices A and B are constant matrices of compatible

dimension. The vector _ is the state of the system and the vector ff is the control. The idea

is that we can use the control ff to steer the state from point to point in the state space R '_.

We CaD. think of the first component of _ as representing the position of the system and for

appropriate A the second coordinate is the velocity, the third acceleration, etc. A common

situation, for example in air traffic control, is to specific the position that the system must

be in at a sequence of times. So in fact what we have is a set of points through which

the system must traverse at specified times. One could fit these points with a spline curve

and then ask for the control that would move the system along that trajectory. In fact this

can be done but we will show that the control law can be developed from natural control

theoretic principles that will move the system through the points at the desired times and the

resulting curve will be piecewise analytic and will have 2n - 1 continuous derivatives, i.e. a

generalized spline. With this framework we can construct a wide variety of spline functions.

If the matrix A is nilpotent then the resulting construction is just that for polynomial splines.

If the matrix is 2 x 2 and one eigenvalue is zero and the other is a nonzero real number then

the spline is the usual exponential spline. In general the nodal functions are the coordinate

functions of the matrix function eA_.

In this paper we give a unified treatment of all of the common one dimensional spline

functions using simple ideas from control theory. It is coming to be understood that there is

a large overlap between linear control theory and elementary numerical analysis. Eigenvalue

methods are know to be closely related to the theory of the matrix Riccati equation [2], there

are close relations between observability and quadrature techniques [8], system identification

and Prony's method are very similar [1] and now we see that the spline constructions and

basic linear controllability are manifestations of the same phenomena.

In Section 2 we review basic material from the theory of linear control systems that is

needed for the development and give a condition that characterizes the optimal control law

that generates the spline functions. In Section 3 we give the details of the construction

of spline functions using control theory and in Section 4 we classify the possible classes of

spline functions that arise from the control theoretic construction. In" Section 5 we examine

in detail some of the particular classes from Section 4 and finally in Section 6 we present a- o

series of numerical examples compalring the various classes.

.



2. Some results from the control theory.

In this section we collect a series of results from linear control theory. Most can be found

in any control theory textbook. See, for example, the book by Brockett, [5].

Consider the linear system:

-_x(t)d_ = A_(t) + bu(t), t E [0,T], (2.1)

with

0 1 0 .--

0 0 1 ...

A= : : : ".

0 0 0 ...

al a2 a3 • • •

and the observation function

0/ l0/ /1/0 0 z2(t)
: , _= : , _(t)= i ,

an 1 _m(t)

(2.2)

y(t) = Te(t), _ = (1,0,...,0). (2.3)

Let us divide [0, T] into n subintervals as

0 = to < tl < "'" < tn-1 < tn = T,

and define hk = tk -- tk-x, the length of the rth subinterval. Our goal is to find a control

law u E C"-2[0, T] that drives the system (2.1) from _(0) = _ to _(T) = z-'r such that the

observation function y(t) satisfies the interpolation conditions
'° o

y(tk) = c_k, k = 1,--.,¢t- 1. (214)

Furthermore, u(t) minimizes the functional

%

foTu(s)2ds. (2.5)

Such a control is called an optimal control.

Definition. The system (2.1) is called controllable if for any _o, _-_, and r > 0, there is

a u(t)such that, " •

Z"• _ =_(r) _ eA_° +" _A('-')_,(s)ds.

Theorem 2.1 : The system (2.1) is controllable if and only if

rank ('_,A'_,...,A'_-'_) = m. (2.6)
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For the specialmatrix A as in (2.2), it is easy to verify that

(_', A_,..., Am-l_) -

0 0 ... 0 1

0 0 ..- 1 *

: : ". : :

0 1 ... * *

, (2.7)

and hence the condition (2.6) is satisfied. From Theorem 2.1, the system (2.1) is controllable.

Z-Theorem 2.2 : The system (2.I) is controllable, if and only if the matrix e-A_br e-Ar'ds

is invertible.

For the special matrix in (2.2), we then define

M(t) = (jot e_A,_,e_Arsds)_l.r (2.8)

Theorem 2.3 : When the system (2.1) is controllable, a control that moves the system from

_(t) = YL to Z(t-) = jR given by

r
u(t) = gre-A '([ e-Asgr_-_T'ds)-l(_-_;R - _-_'-;L),

Jt

(2.9)

minimizes the functional J(v) = v2(s)ds among all controls that move the system from

_(t_)= & to _(t-)= _a.

Theorem 2.4 : When the system (2.1) is controllable, a control u E C"-2[0, T] that moves

the system from _(0) = _, passing through _tr_(t_) = otk, to _.(T) = x"r is'given by

1"i--1 rn

u(t) = _ Z,,h(t) + _'r,g,(t), (2.1o)
k=l i=1

with

°11,

e_leA(tk-t)'b t < tk,
A(t) = { o t > tk, k= L...,n-1,

o

A(tn-t)'_
gi(t)=eie o, i=l,...,m,

wheree-'_: = (1,0, ...... ,0), ,em--'r= (0, ... ,0, 1), and_k's, Ti'aredeterminedbyn-1 interpo-

lation conditions _r 2( tk ) = ak and rn boundary conditions g( T) = x-'T. Moreover, the control
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T(2.10) minimizes the functional S(v) = v2(s)ds among all functions v E C'_-2[0, T] that

drives the system (L1) from :_(0) = _, passing through _r£(tk) = ak, to _(T) = z-'r

The construction of the optimal control is based on Hilbert space techniques and is based

on writing the interior constraints in terms of a linear variety defined in terms of the functions

fk(t) and the terminal constraints in terms of the functions grit). Once the constraints are

written in terms of linear varieties the form of the optimal control is clear based on the

orthogonal complement of the intersection of the varieties, this is a standard technique and

is found for example in [7] or [6]. The proof of Theorem 2.4 is based on two facts: (i) u(t)

defined by (2.10) is m - 2 times continuously differentiable; (ii) fk's and g_'s are n + m - 1

linearly independent functions. In the following, we verify (i) and (ii).

(i) From the construction (2.10), we only need to show that

f_r)(tk)=O , r=O,...,m-2, k=l,...,n-1.

Indeed, for all k = 1,...,n - 1, r = 0,...,rn - 2,

lim f(_r)(t) = lim _'T(--A)'eA(t_-0b = (-1)'e-_xA'b= 0,
t---,tk-O t---,tk-O

by virtue of (2.7). Hence fk(t) is m - 2 times continuously differentiable, and so is u(t).

(ii) Set _ 7igi(t) = 0 for t E [0, T], i.e.,
i=1

rrL

,.¢.p-_. pA(tn-t)-£ _T eA(tn-t) _ O,F(t)=__,,,_i_ v= =
i=1

ErL

with 7= _ 7,_. Then we have F(r)(t) = 0 on [o,T], especially
i=1

F(_)(tk)=_r(-A)_=O, r = 0,...m-1.

Therefore,

p_(b, Ab,..., A _-1 b) = fir.

In light of (2.7),"p-" is a zer_ vectordj_nd consequently, 7i = 0, i = 1,.-., m.

linearly independent functions.

Next we set
T'n

fl,,_,f,__(t) + _ 71gi(t) = O, t e [0, T].
i=1

So gi's are m

(2.11)



If fl,,-1 _ 0, then
.O

• 1 "*

-r,g,(t). (2.12)
m

By the definition, f_-x(t)= 0 on (t,,_,,t,,), So __,Tigi(t) = 0 for t E (t,__,,t,) which yields
i=l

7, = 0, i = 1,...,m, and hence f,,_,(t) = 0 by (2.12). This is a contradiction. Then (2.11)

yields _,,-1 = 0, and consequently 7, = 0, i = 1,..., m. So f_-x and gi's are m + 1 linearly

independent functions.

Continue the above procedure by adding fk's one by one, we are able to show that fk's

and gi's are m + n - 1 linearly independent functions.

3. Construction of splines by the control theory.

Theorem 2.4 implies that an optimal control for the system (2.1) (with A given by (2.2))

is unique• But in general, _k's and 7,'s in (2.10) are difficult to find, we then introduce

a practical procedure to construct a control law that satisfies all the requirements. This

control law actually leads us to a construction of spline functions.

By the existence of a control law, there exists a set of points _i,...,_-_-1 with z_ =

ak, k = 1,...,n - 1 such that the solution of the system (2.1) satisfies £(tk) = _k, k =

0, 1,..., n - 1, n. By virtue of Theorem 2.3, a control law that satisfies all the requirement

can be defined piecewise as

= k = 1,... (3.1)

where uk(t) is given by (2.9) with _t = tk-1, _-- t_, fi'L = _k-1, and fi'n - x-_. Then equations

to find (n - 1)(rn - 1) unknowns in _l,...,k-,-x (recall that x_ = ak k = 1,.-.,n - 1, are

known) come from (n - 1)(m - 1) continuity,onditions on u(t), i.e.,

u_,)(tk)= ,(O (t,), r = O,... m- 2, k= l,...,n-1 (3.2)_*k+l ' "

From (2.9),

uk(h,) = (A'b)Te-A't*(]t,_ e-A'_bT'e-Ar'ds)-x(e-Atk_" -- e-At*-'x'-l); .!3.3)

T t t'_k+l

uk+_(h,) = (A'b) re -A *(It, e-Asb'_l"e-Arsds)-'(e-At*+,g k+l -- e-At*x-'k). (3.4)

• " Next, we shall simplify (3.3) and (3.4). Toward this end, we introduce a change of variable

s = t_-t + s' into

6



= eAr'k-lM(hk)e A'_-_, (3.5)

where M(hk) is defined by (2.8). Substituting (3.5)into (3.3), we have

= - (3.6)

Similarly,

u(,) (A,-_)TM(hk+l)(e-Ah_+,yk+l _k). (3.7)_+l(tk) =

Substituting (3.6) and (3.7) into (3.2) yields a linear system for (n - 1)(m - 1) unknowns in

_1,..., _.,_-1:

--(A'b)re-ArhkM(hk)_. k-1 + (A_b)T[e-ArhhM(hk)e -Ahk + M(hk+,)]£ "k

--(A'g)TM(hk+,)e-Ahk+_+_=O, r=0,...,m--2, k=l,-.-,n-1. (3.8)

By virtue of the existence and uniqueness of the optimal control, the linear system (3.8) has

a unique solution and hence its coefficient matrix is invertible.

In order to solve (3.8), The following quantities needs to be calculated, A', e -Ah (e-Arh),

and M(h). Sometimes it is easier to use the Jordan matrix of A, denoted by A. There exists

an invertible matrix Q such that A = QAQ -1, and hence

A" = QA'Q -1, e -Ah = Qe-^aQ -1, e -Arh = Q-Te-ArhQT. (3.9)

foohQe-A'Q-I_7"Q-Te-Ar'Q Tds) -1 Q-T tQ(h)Q -1 (3.10)M(h) = ( = ,

where

i_l(h) = ( fohe-^_Q-lb(Q-lb)T e-^r_d.s) -1.

_0 te(t) =  A'e°+

/o' "
o

Q

• 7

(3.13)

imm 

Substituting (3.9) and (3.10) into (3.8), we then have

_(arQ-lg) Te-Arh,l_l(hk)Q-'_ k-1 q- (h'Q-'b)T[e-hrhklVl(hk)e -^h_ q-/l_/(hk+,)]Q-'_ -k

-(A'Q-Ig)r2fl(hk+_)e-^hk+'Q-_i k+_ = O, r = O,...,m- 2, k = 1,... ,n- 1.(3.12)

Solving (3.8) or (3.12) for (n- 1)(m- 1) unknowns in _x,... _,,-1, we then have the control

u(t) defined piecewise by (3.1). The solution of the system (2.1) is thus given by



Note that z_(t) = Xi+l(t), i = 1,...,m - 1. So the continuity of x_(t) is continuity of

X_+l(t) for i < m. Further, continuity of x_'_+')(t) is continuity of u(')(t), r = O,...,m - 2.

Therefore, the observation function y(t) = _r_.(t) = zl(t) is a 2m - 2 times continuously

differentiable function that satisfies the boundary conditions

y(')(0) o y(r)(T) r=xr+l, =xr+ 1, r=0,...,m-1 (3.14)

and the interpolation conditions

y(t_)= _, k = 1,...,,- 1. (3.15)

Hence y(t) is a spline function. We see that from the control theory, we can derive quite

general spline functions. Summing up, we have proved

Theorem 3.1 : (1) There exists a unique function y(t) E C"_-2[0, T] that satisfies the

boundary conditions (3.14) and the interpolation conditions (3.15); (2) y(t) is the first com-

ponent of the vectorfunction_(t) givenby (3.13)in whichu(s) is definedpiecewiseon each
subinterval [tk-l,t_], k = 1,...,n, by

u_)(tk) = _e_Ar(t-tk_,)M(hk)(e-Ah, gk_ _-1)

= (Q-a-g)Te-Ar(t-t_-,)i_l(hk)(e-Ah*Q-l_k-Q-l_.k-1), (3.16)

where _, k = 1,...,n-1 are determined by solving the linear systems (3.8) or (3.12) (Note

that x-'°, &m and x_x, k = 1,..., n - 1 are given by the boundary conditions (3.14) and the

interpolation conditions (3.15)).

In the next section, we will see that these splines can be piecewise polynomials, trigono-

metric functions, exponentials or any combination. As special cases, we are able to recover

classical polynomial splines (odd order) and exponential splines by properly selecting pa-

rameters al,-'-, a_ in (2.2) for the matrix A.

St .,O

I

4. Classification of splines.

The type of the splines is determined by its nodal shape functions. From the control

theory, we are able to construct the nodal shape functions of splines.

In order to see the kind of interpolation functions in _'(t), we only need to consider one

subinterval. Without loss of generality, we use the first interval (t0, t_) -- (0, h) where the

solution of the system (2.1) is given by

_0 t cA(t-s) (4.1)_(t) = _'_ + _(s)ds.
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From Theorem 2.3,

u(t) = gre-"T'(fh e-A'_e-AT'dS)-l(e-Ah_1- _)-
J0 -'

Substituting (4.2) into (4.1), we have

e(t) = eA'_ + e_('-')b'Fe-AT'dsM(h)(_-ahe_--_)

= Q_'[Q-_ + M(t)-lM(h)(e-^"o-le 1- O-'_')l,

(4.2)

(4.3)

where M(h) and lf/(h) are defined by (2.8) and (3.11), respectively.

Theorem 4.1 : Let A be given by (2.2), let (p_(t),... ,p,_(t)) be the first row of the matrix

eAt[I-- M(t)-XM(h)] = QeAt[I - 2_I(t)-l_I(h)]Q -_, (4.4)

and let (qt(t),'" ,qm(t)) be the first row of the matrix

eAtM(t)-12vI(h)e -ah = Qe^t f4(t)-ll_l(h)e-^hQ -_. (4.5)

Then for r = 0,...,m - 1,

p!')(O) = 6i,_+1, p!')(h)=O, i=l,-..,m, (4.6)

qJ_)(O) = 0, qJr)(h) = (5j,,+1, j = 1,...,m. (4.7)

Proof: From Theorem 2.1 and (2.7), the system (2.1) is controllable. By virtue of

Theorem 3.3, a control that moves _(t) from _(0) = _ to _(h) = _.1 is given by (2.9) (with

t = 0, t = h, _L = _, fir = :F1), and consequently

= _e(t)

= _a,[i_ M(t)-_M(h)l_ + _ea'M(t)-_M(h)e-Ahel

= (pl(t),...,p,,(t))z -'° + (ql(t),'",q_(t))_ 1

.,:,p =__x°plS(t)+_x_qj.(tg. . . ,'_",, , (4.8)

y(t)

Choose z-'° = _i :_I = 6 in (4:8), and we have

I") y(') r = 0,... m - 1.p (t)= (t),

9



Therefore for r = 0,...,rn- 1,

pl')(0) = y(')(0)= _')(0) = x,+,(0) = x,+,o=G+,,

p!')(h) = y(')(h) = _')(h) = _,+,(h) = _,+,'=0, i=1, -o-_m.

Then we have proved (4.6). The proof of (4.7) is similar. •

We call p_, qi nodal shape functions by the characteristics (4.6) and (4.7). From (4.4) and

(4.5), We see that the nodal shape functions are linear combinations of function entries of

matrices eat and e^tl_f(t) -1. In order to see the type of functions in the spline, we only need

to examine the entries of these two matrices.

In the following, we classify the spline functions derived from control theory. This clas-

sification is based on the spectrum of the coefficient matrix A of the system (2.1) under

different circumstances. We shall concentrate on the case m = 2. The reasons are: (1) The

general situation for large m is very complicated and is difficult to describe precisely. (2)

The case m = 2 has almost all features for the general case. (3) From the practical point of

view, the case m = 2 is the most useful and important case. Let

A= # 27 '

The eigenvalues of A are A1 = 7 + _'_T-_, A2 = 3' - _/'_'r_.

1. 7 2 + fl > 0. There are two distinct real eigenvalues. Then the Jordan matrix A of A,

the transformation matrix Q and its inverse are given by

(1 ,), Q_, ,)0 A 2 ' Q-_ A, A 2 -- A2 - A1 --A1 "1 "

Then

From

(4.9)

( e)_t 0 i
ent (4.10)

= 0 e "\2t "

3.11) (by changing h to t), we have

()() 0)1 fot e -xl' 0 -1 (-1, 1) e_j_2s ds
/_if(t)-I -- (A2 - A1) 2 0 e -a2s 1 0

I- (..(i- e-':_'t,/2A, (e-(x'+:_:)` - 1)/(AI + A=) ) (4.11)-- (Ai-A,): "(e-( "x'+'x:)'- 1)/(A1 -'.F"J:z) (1-e-'_'x2i)/2A: '

1 /' (e"x''- e-'X")/2A,
= (.X:- .x,): _,(e-;"' - _':')/(.X,+ .X:)

(_-_'_'-_;"')/(.X,+ .,X2)
(e_.'-e-_':')/2.X: )" (4.12)

.. m
10 .



1.a. 0' # 0, /3 # 0. In this case _1, )_2,-_1,-)_2 axe all distinct. We then have the

exponential spline with basis functions given by linear combinations of e_lt, e -_It, e :_2t, e -_2t.

1.b. 3' - 0,/3 > 0. In this case _1 = -)_2 = v/_, the basis functions in 1.a. degenerate.

However, by applying the following limits

lim e-_2t -- e'ht e'ht(e -(;_1+'_2)_ -- 1)= lira = -re _t
_2--.-_ AI + ,k2 _+,_2--.o AI + ,k2

lim - lim = -re -_t
_2-.-_ ,_I+ )_2 :_t+_2--o ,_I+ ,_2

(4.12) becomes

1 ( (e_'t-e-_'t)/2_l -te_'t ) (4.13)e^'JT(t)-' = _ --re-:"' (_" - e-_")/2.X, "

Hence we have the exponential spline with basis functions given by linear combinations of

e_', e-Vq', te_', te-Vq'.

1.c. /7 = 0, 3' # 0. In this case, ,kl = 0 (if 7 < 0), or )_2 = 0 (if 7 > 0). Again the basis

functions in 1.a. degenerate. Assume that Ax = 0, then A2 = ,k = 23'. From the limits

lim (e:_'t - e-:_lt) = t, lime _lt = 1,

we have

= 0 eat ' )_"-a e -_'- 1 (1 - e-_at)/2 ' (4.14)

1( _t e-_'-I )e_'_(t)-' = _-_ 1 - e_' (e_'- e-_')/_ " (4.15)

Therefore we end up with the exponential spline with basis functions given by linear com-

binations of 1, t, e 2_t, e -2_t. Later we shall further show that this is the classical exponential

spline [9].

2. 7_ +/3 < 0. There are two complex eigenvalues: )_l = 7 + iw, _ = 7 - iw, where

2.a. "7 # 0, /3 < 0. Evaluating (4.10) and (4.12), we have the exponential-trigonometric

spline with basis functions given by linear combinations of e"_*sin wt, e_*cos wt, e-'_ sin wt,

e -_'t cos _J_...i_ *

2.b. 3' = 0, fl < 0. Again this is a degenerated case where )q = ,k2 = iw = iv/z"_.

Therefore (4.10) is now

eAt=(coswt+isinwt 0 ) (4.16)0 coswt+isinwt "

11



Taking the limit 7 _ 0 in (4.12), wethen have

-1 ( sinwt/w -t(coswt +isinwt) ) (4.17)ehtjO'(t)-I -- _'2 --t(coswt - isinwt) sinwt/w , "
p

Hence, we have the polynomial-trigonometric splint _with basis functions given by linear

combinations of sin _/'Z--flt, cos _/'L"flt, t sin _-'flt, t cos _/'L--flt.

3. 3,2+fl=0. In this caseA1 =A2=7.

3.a. 3' -_ 0. We have non-degenerated Jordan form in this case,

0(1, (4.18)

Therefore,

= 0 e"yt 0 1 '
(4.19)

,
/o ( )= __, (1/_ - s)_ 1/_,- s de. (4.20)

I/7 -- s 1

After some more detailed manipulation (see the next section) we can show that this is the

exponential splint with basis functions given by linear combinations of e"yt, te "_t, e -'_t, te -_t,

similar to the case l.b.

3.b. 7 = 0. In this case, A itself is a Jordan matrix. We compute directly the following

quantities:

A= 00 01 '

M(t)-_= 0 1 1 -s 1 -P/2 t "

( -t3/6 t2/2 ) (4.23)eAtM(t)-x = --t212 t "

Then we have the polynomial splint with basis functions given by linear combinations of

"- 1, t, t 2, t 3. In the next section, we shall further show that this is the well-known cubic splint

[41.

From the above discussion, we see that we may encounter all kinds of splines by varying

parameters/3 and 7. Two general cases are 1.a. and 2.a. where we have full sized exponential
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or exponential-trigonometricsplines.Degenerationoccurswhenzeroor multiple eigenvalues
appear. The extremal is the case3.b. when both eigenvaluesare zero. It is this extremal
casethat drawsmost of the attention. This is evidencedby extensiveinvestigationregarding

the cubic spline in the literature. Case1.e.also hasbeeninvestigatedfrom a different point
of view. But we can hardly find any work regardingthe other cases(except 1.c. and 3.b.)
listed above.

The situation for m > 2 is similar. Let A1,-'-, An be eigenvalues of A. When A1,..., A,_;

-A_,...,-A,,, are all distinct, we have the exponential spline with the basis functions given

by linear combinations of

e)q t, e-_l t, . . . , e Amt, e -Amt,

See case 1.a. When complex eigenvalues appear, we get the exponential-trigonometric splines

with basis functions e :'_t sinwt, e -'\kt coswt (see case 2.a.). ff we have multiple eigenvalues,

the terms like

te At, tsinwt, te -_t coswt, t2e _t, ...

will appear in basis functions (see cases 1.b., 2.b. and 3.a.). Finally, zero eigenvalues will

introduce polynomials into basis functions (see case 1.c.) and the extremal situation is that

all eigenvalues are zero in which case we recover polynomial splines of order 2ra - 1 (see case

3.b.).

5. Examples of splines.

In this section, we shall work out in detail some classes of splines. We shall explicitly

"construct the nodal shape functions and the linear system needed to solve for the unknown

parameters.

1. Our first example is the case 3.b. which turns out to be the classical cubic spline. We

first construct the nodal shape functions. From Theorem 4.1 we need only to calculate the

first row of matrix (4.4) and the first row of matrix (4.5). Let t = h in (4.22), and we have

M(h) = _h2[ 2 h = h"-i h2/2 h3]3 "

Thus from (4.21) and (4.23), we have

eAt--eAtM(t)-lM(h) = 0 1 - 0 1 -t212

h2/2
h3/3 )

13
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Hence

p_(t)= t[1+ (¼)'- 2(_)]; (5.1)

h 11. (5.2)
t

q2(t) = t( )[(_)-

They axe precisely the nodal shape functions for the Hermit interpolation.

Next we set in (3.8), r = 0, _k = (ak, fl_)T, and hk = h_+x = h (by this, we are using

equally spaced intervals). The equation (3.8) is now

_ _Te-arhM(h)£k-1 + -_r[e-ArhM(h)e-ah + M(h)]£ k - brM(h)e-Ahz-_+l = 0, (5.3)

fork= 1, • ..,n- 1. Substituting

e_ArhM(h)= (lh 0 12 h/ h2/2)12( 1- 1 ) _g ( h 2 h3/3 =--_ -h/2

12(1 -h/2)M(h)e-ah = [e-arhM(h)]T =-_ hi2 -h2/6 '

= _ -h/2

2(ok+,)0' h ) #k+l

k= 1,-..,n- 1.

 aTh ,h, a 12(1 h,2)(1h h'2)= h--S -h/2 -h2/6 0 1 h:/3

into (5.3) yiel_ls,

(,_) #__, +(0,_) #_ h2

or

3

#k-, + 4fl_+ #k+, = _(,_k+_- _k-,),
In the matrix form (5.4) is

410...00

141-.-00

014---00

: : : ".. : :

000--.41

000..-14

#: J a_- al

#3 "3 a4 - a2 0

! =_ ! - :
#._= _._,-_._, 0

, #.-1 _.- a.-2 k 0- )

(5.4)

(5.5)

14
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This is precisely the same linear system as we construct the cubic spline. After solving flk's

from (5.5), the desired cubic spline can be expressed piecewisely on the subinterval [tk-x, tk],

k= 1,-..,n as

y(t) = ak-lpl(t - tk-1) + flk-lp2(t - tk-1) + akql(t -- t_-l) + flkqz(t -- tk-1),

where pl,p'2, qx,q2 are given by (5.1) and (5.2).

2. The second example is the case 1.c. which is the classical exponential spline [9]. The

nodal shape functions are again derived from the first rows of matrices (4.4) and (4.5). We

use the Jordan form. let A1 = 0, and A2 = A (4.9), and we have

Q= O A =-_ 0 "

Using (4.14) we can calculate (by setting t = h),

£r(h) = A3 ( At
e-At _\

)_1 (e -a'- 1 = C(A) (1 + e-_h)/2
1 (1 -- e-2a')/2 1 1 )Ah(1 - e-Ah) -1 '

where
2A3

C(A) -- Ah(l + e-_h) - 2(1 - e-_h)"

Recall (4.14) and (4.15), and we have

Qem[I - M(t)-12fl(h)lQ -_

(11)(1o)c, )= o A 0 ,_" _ l-e;" (e;"-e-_")/2 "

1 Ah(1-e-_h) -' ] 0 1

= 0 _ 0 At 1- e:_` (e :_'-e-_')/2 "

((l+e-_h)/2 1 )(A-l)1 Ah(1 -- e-Ah) -1 0 1

= (p,(A;t). p:(A;t))., ..

where

pa(A;t) = I --
At(1+ e-") - (1- e-") - _('-") + e-_''

Ah(1 + e-_h) - 2(1 - e -xh)
(5.6)

w

15



p=(A;t)- e "xt-1 h [!-e-xh t 1-e At
A l+e -Ah -l__-_h Ah (h + Ah )-2

Ah eA t e_At(l__--zT=x_-)--2+

Ah Ah
.

(5.7)

where

ql(A;t) = 1 - pl(),;t), (5.8)

Ah
--2-t-

q=(k;t) = h 1-e -:_h t 1-e At -1 e)'t e -'\t,-_-_ [ A-h (h + ---;Z ) - Ah Ah ]. (5.9)
1 + e -Ah - 2 Ah

(5.6) - (5.9) are nodal shape functions for the classical exponential spline.

Next we set in (3.12), r = 0, _k = (ak,#k)T, and hk = hk+_ = h. The equation (3.12) is

now

-(Q-'We-A_SI(h)Q -'_-_ + (Q-'W[e-^_hSf(h) e-^_+ 5f(h)]Q-'_

-(Q-'g)T_l(h)e-^hQ-_:_k+_= O, k = 1,-..,n - 1. (5.10)

Spbstituting

1(-1,1),(Q-_b)_=
,a

e-^hf/l(h) = C_!A) 0 e -Ah 1 Ah(l-e-_h) -_

•- ( )- C(A) (1 +e-Ah)/2 1
- e_Ah Ah(eAh-1) -1 ,

f4(h)e-^,',=[e-^hf4(h)]Tc(k)((l+e-:°')/2 e-Ah)= i Ah(e Ah-1) -I '

16
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e-"h_i(h)e -^h = C(A)

= c(A) l

)
Ah(e :_h - 1)-a /

(i + e-ah)/2 e-ah '_

e-_h Ahe-ah(eah _ l)-X ]

into (5.10), canceling C(A)/A 2, we have

_(_1,1) ( (1 + e-ab/2 i )(A-ie-An Ah(e an - 1) -x 0 1

+(-1,1) 1+ e-_n ah(1 + e-2an(1- e-an)-_

' 1 Ah(e an -- 1) -1 0 1

0 I _k

)' iq"k+ 1 --" O_

_+i .

or

1 - e-2;_h - 2Ahe -an ,Ah(1 + e -_an)

2(1 - e-An) (,8,_-1 + ,&'k+,) + [ _'_-'e_-_

= A1 - e -An
2 (a_,+l--c_k-1), k=l,---,n-1.

- (I + e-_n)]flk

(5.11)

This is the linear system for the exponential spline, it can be written in the matrix form as

0 -.. 0 0

b(A; h) -.- 0 0

a(A;h) -.. o o
: ".. : :

0 ... _(_;h) b(_;h)
0 ... b(A;h) a(A;h)

m 0 °

0
b(A; h)/3,,

/3__2

_n--1 /

(5.12)

where

a(A; h) = 6 ih(1 + e-2an) - (1 - e -2an)
Ah(1 - e-an) 2

b(_;_)=3
1 - e -2an - 2Ahe -an

Ah(1 - e-;_n) 2

Again, after finding/_k's, the spline can be expressed piecewise by the nodal shape functions,

• 17 ,



It is interesting to examine the limiting case for the exponential spline obtained above.

Applying the L'Hospital's rule three times, we are able to verify that

1. (5.13)

We then recover (5.5), the tridiagonal systems for the cubic spline. Further we can verify

that (by successively using the L'Hospital's rule)

limql(A;h)=ht-l-(-_-l)3- ( )3=-2( )3+3()2=q_(t),a-.0

ql(t) is one of the nodal shape functions for the cubic spline given by (5.2). The other three

nodal shape functions can be verified similarly. So the cubic spline is the limiting case for

the exponential spline 4.1.c. when A ---* 0. This is not a surprise from the following limit

regarding matrix A of the system (2.1),

(01) (01)= oo' (5.14)

where the left hand side is the matrix A for the case 1.c., and the right hand side is the

matrix A for the case 3.b. We can also examine the limit when A --* c¢ where

lim a(A; h) = 6, lira b(A; h) = 0,
A---,¢0 a--.¢o

(5.15)
o ,

(5.16)

(5.17)

t t
lim p,(A;t) = 1 lira q,(A;t)a-._ -h' _--.oo =h'

lim p2(A;t)= 0 = lim q2(X;t).
a_oo a-...oo

Subst, ituting (5.15) into (5.12), we then have flk = (ak+_-ak-1)/2h, k = 1, ...,n- 1, which

is the central difference scheme. We see that (5.16) gives the nodal shape functions for the

linear interpolation. In order to verify (5.17), it is convenient to rewrite

p (A;t)
h e -An (Ah + 2)e -xh 2 h

= -Ah-2 1-e -an (Ah-2)[Ah(l+e-ah)-2(1-e-ah)](_ 1--e -ah)

1 C(X) e_ah ) e -ah - 2 e"x(t-h) 1 _ e-At h (e -At - 2)]
- A + "_T -[-t(1 - + _ ._ " )_ 1 -- e -;_h '

C(A)2A3 [--t(1 - e -;_h) + 1 -A e-At -4- e-ah --_e)_(t-h) "4- h(ea(t-h) --1 2e-)_h--e -)_h'4" e-a(t+h))].q2()t; t)

So the linear spline (the piecewise linear interpolation) is the limiting case for the exponential

spline 4.1.c. when X _ oo.

18



3. The third example is the case 2.b. when/3 = -w 2, 7 = 0 and

A = -w 2 0 "

Denote

1 1

Cl =w2h 2-sin2wh, C2 = _sin2wh +wh, C3 =sin2wh, C4=_sin2wh-wh.

Following the same procedure as the first example, we have the nodal shape functions as

following

Clp,(t)

Clp_(t)

q (t)

C q (t)

= Ca coswt + C2(sinwt - _otcoswt) - C3wtsinwt,

= wh2sinwt - Cztcoswt + C4tsinwt,

= 1- pl(t),

= h sin wh(sinwt - wt coswt) - t sinwt(sinwh - wh coswh).

When evenly spaced intervals are used, the tridiagonal system for unknowns _k is given by

b(w;h)flk_,+a(w;h)_k+b(w;h)flk+x--c(w;h)(c_k+l-ak-1), k- 1,--.,n, (5.18)

where

a(w;h)=2wh-sin2wh, b(w;h)=sinwh-whsinwh, c(w;h)=w2hsinwh.

It is easy to verify that,

3a(w; h) 3b(w; h) 3c(w; h) 3
lim - 4, lim - 1, lira -
_-.o (wh) 3 _--.o (wh) a _-.o (wh) 3 h'

which are the coefficients for the tridiagonal system of the cubic spline. We can also verify

that at the limit w ---* 0, the nodal shape functions p_(w; t) and q_(w; t), i = 1,2, have the

relative nodal shape functions of the cubic spline as their limit when w _ 0. Indeed, we

recover the cubic spline from this trigonometric spline when w ---, 0.

4. The fourth example is the case 3.a. where/3 = -7 2 and

(01).4 = __,2 27 "

Denote

C = 1 - 2e -2_h + e -4"h - 4"y2h2e -2"Yh.

19



Computing the first rows of matrices eAt - eA'M(t)-lM(h) and eA'M(t)-lM(h)e-Ah, we

have the nodal shape functions

ups(t)

q,(t)

cq2(t)

= e-'_(2h+0(2"yh - 2_/Zh z - 1,t + 21,2ht - 1) + e-'Y_(1 + 1,t)

+e-_(2h-0(Tt + 272ht - 27h + 272h 2 - 1) + e-'_(4h-0(1 - 7t),

- t(e -'y(4h-t) + e -'vt) + e-'Y(2h-t)(23,ht - 27h 2 - t) + e-_'(2h+t)(27h 2 -- t -- 2",/ht),

= 1- p,(t),

= e-'Y(3h-O(h - t - 2_ht) + (e -'y(3h+0 + e-'_(h-0)(t - h) + e-'Y(h+O(27ht + h - t).

Evaluating (5.3) in the current case, we get the tridiagonal system (5.18) with

a(.,; h) = a(-_;_)

b(_,;h)= b(-y;h)

c(_,;h) = c(_; h)

= e'Yh(1 -- e-4"y h __ 41,he-2"h),

= e-2"h(1 + _h) - (1 - 7h),

= -),:Zh(1 --e-2_h).

Again we can verify that the cubic spline is the limiting case for this exponential spline when

7--,0.

q,

5. Our last example is a case for m = 3 when

0 1 0)
A= 0 0 1 .

0 0 0

The system (2.1) with A given by (5.19) produces the quintic spline. In this case,

1 t t2/2)
e At -- 0 i t ,

0 0 1

(5._9)

(5.20)

t (tsl(20) -t418 t3/6 )t "
M(t)-' = f e-n'_re-Ar'ds= --t418 t3/3 --t2/2 , (5.21)

.Io
t3/6 -tz/2

240/h s 120/h 4 201h s)
M(h) = [M(h)-']-'=3 120/h 4 64/h 3 121h 2 . (5.22)

20/h 3 12/h 2 3/h

Using (5.20) - (5.22) to compute the first rows of matrices eAt- eAtM(t)-_M(h) and

eAtM(t)-lM(h)e -At', we then have the nodal shape functions for the quintic interpolation:

pl(t) -- (h - t)3[h 2 "4-3ht + 6t2], q,(t) = _[h 2 - 3hi + 6t 2]
h 5

20



_3

q2(t) = _-_[h(t - h) - 3t21,

t3(t - h)=

p_(t) - (h-t)a[h t +3t2] '
h 4

p3(t) -- (h-t)3t2, q3(t)-
2h 3 2h 3

In order to compute the parameters for the optimal control, we set in (3.8) r = 0, 1 _.k =

(ak, ilk, 3'k) T, and hk = h_+l = h. Then except (5.3), we also have

_ (A'_)Te-ArhM(h)£ k-1 + (A-_)T[e-ArhM(h)e -Ah + M(h)]£ k -(A-b) TM(h)e-Ah_ k+l = O,

(5.23)

for k = 1,-.. ,n- 1. Substituting (5.20) - (5.22) into (5.3) and (5.23), after some tedious

symbolic manipulation, we have the following linear system,

8(,3k+x - lk-1) + h(-Tk-1 + 67_ - 7k+1) = h(A-x - 2£ + A+,); (5.24)

+ 16# + + h(Tk-, -7k+,)= h(h+ - h-,), (5.25)

for k = 1,... ,n- 1. If we arrange the unknowns as (fll, hTt,'",fl,,-t,h%-x), we will get

a linear system with a banded 6-diagonal coefficient matrix; if we arrange the unknowns

as (!1," "" ,_,,-1,h71,"" ,h%_x) = (jT, h'_T), we will have a linear system with a block

tridiagonal coefficient matrix.

S E T

where

S

16 7 0 ... 0 0

7 16 7 ... 0 0

0 7 16 .-- 0 0

: : : ".. : :

0 0 0 -.- 16 • 7

0 0 0 ..- 7 16

g

6 -1 0 -.. 0 0

-1 6 -1 -.. 0 0

0 -1 6 .-- 0 0

: : : ".. : :

0 0 0 ..- 6 -1

0 0 0 .... 1 6

E ___

0

-i

0

0

0

1

0

-I

0

0

,°°

0 1

-1 0

0 0

0 0

0 0

21



15(f2 -- fo)/h - 7/30 - h%

15(f3- fl)/h

15(f4- f2)/h

15(f,_1 - f,_3)lh

15(£ - - + h'r,,

20(fo -- 2fl + f2)/h + 8_o + hT0

20(fl - 2]'2 + f3)/h

20(/2 - 2f3+/.)ih

20(f,-3 - 2f,-2 + f,-1)/h

20(f,__ - 2f,-x + .f,)/h - 8_,_ + h%

In general, if A is a m x m nilpotent matrix with l's on the super diagonal and O's

elsewhere, we shall recover all odd degree polynomial splines (with degree 2m - 1).

6. Numerical experiments.

In this section, we test the behaviors of different splines numerically.

intervals are used for all computations.

Example 1. Comparison of the cubic spline with the quintic spline.

Test function 1.

0 -l_<t<O
f(t)= 1/2 t =o

1 O<t_<l

For the cubic spline, we pose, in (5.5), the boundary conditions:

Equally spaced

/3o = 0 = _,;

and for the quintic spline, we pose, in (5.25), the boundary condition:

/3o = 0 =/_,,, -yo = 0 = -/,.

Recall that _i and 7j are the coefficients for the first and the second derivatives, respectively.

The spline functions are then constructed for h = .2, h = .1, h = •05, and h = .025. Graphs

are plotted in Figure l(a), l(b). We see that the qualitative behavior of the two splines are

• almost same, but the quintic spline has a little better accuracy.

One interesting phenomenon is that the mesh refinement does not effect the maximum

overshoot of the spline approximation• Since this is very similar to the Gibbs phenomenon

for the Fourier series, we term it as "Gibbs phenomenon" of splines. In fact, all spline

functions have this property.

Test function 2.

g(t)=e -_°t3, -l<t<O.
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For the cubic spline, weposethe boundary conditions:

fl0=-30e 1°, fl,_=0;

and for the quintic spline, we pose the boundary conditions:

30 = -30e 1°, 3- = 0, 7o = 960e TM, ,,/'n _ 0.

We use the mesh size h = .2, and plot the graphs in Figure l(c), l(d). We see that the

quintic spline gives much better approximation in the neighborhood of x = -1 since it has

the correct concavity information at z = -1 which the cubic spline does not have.

Example 2. Properties of the classical exponential spline case 1.c.

The test function is the same f(t) as in Example 1. We have observed that for small

parameter ,\, the behavior is much like the cubic spline. This is not surprise from (5.14). The

interesting fact is: For the moderate A, the graph is very much the same as the cubic spline

(Figure 2(a)). If we fix the parameter A and refine the mesh, we observe Gibbs phenomenon

as in the cubic and the quintic splines. But if we fix the mesh (here we choose h = .1) and

increase the parameter A, we see that the approximation converges to the piecewise linear

function (Figure 2(b), 2(c), 2(d)). This confirms our theoretical analysis made in Section 5.

Example 3. Properties of the exponential spline case 3.a.

We use the same test function f(t) as in the examples 1, 2.

For small parameter 7, the approximating feature of this spline is also like the cubic spline

including the Gibbs phenomenon. But when we fix the mesh (here h = .1) and increase the

parameter 7, an unexpected wiggling appears at t = 0 (Figure.3(a)-3(d)).

Example 4. Properties of the exponential spline case 1.a.

Here we choose

and we have A1 = -1, A2 = -2.

examples.

We plot the approximation for h = .1, h = .05, h = .025 in Figure 4(a), 4(b), 4(c),

respectively, again, we observe the similar behavior as that of the cubic spline.

Conclusions

1. Gibbs phenomenon exists for all splines.

2. The quintic spline is recommended if the concavity is important.

0 1
A = -2 -3 '

Again, the testing function is f(t) as in the previous
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3. From the approximation point of view, the classicalexponential spline is preferred

whenthe function haspoints of discontinuity.

A final remark.

For the discussionpurpose,we constructedsplineapproximation in this paper by intro-
ducing the nodal shapefunctions which is not necessaryin practical computation. From the
framework wehaveestablishedbasedon the control theory in Section3, all we needto do

is: providing the matrix A, the vector b to the linear system (3.8), solving (3.8) numerically

to obtain £k's, and hence the control law u(t) (see (2.9)). After we have the control u(t), the

expected spline function is given by the first component of £'(t) defined by (3.13). Based on

our analysis, we are able to choose different splines by simply selecting entries of the matrix

A.

The significance of this investigation is two fold: first, it exposes the relationship between

two important fields - control theory and spline approximations. This enables us to discover

new spline functions and to investigate, systematically, the properties of the spline approx-

imations. Secondly, it provides a practical way to construct different splines from a same

simple framework. From our experience, we feel that this construction is more natural and

easier than the traditional approach.
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Special case with h=.05
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